1,125 research outputs found

    Plasma Instability and Nuclear Fusion

    Get PDF
    Plasma instability and nuclear fusio

    Ultrashort light bullets described by the two-dimensional sine-Gordon equation

    Get PDF
    By using a reductive perturbation technique applied to a two-level model, this study puts forward a generic two-dimensional sine-Gordon evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in Kerr media beyond the slowly varying envelope approximation. Direct numerical simulations show that, in contrast to the long-wave approximation, no collapse occurs, and that robust (2+1)-dimensional ultrashort light bullets may form from adequately chosen few-cycle input spatiotemporal wave forms. In contrast to the case of quadratic nonlinearity, the light bullets oscillate in both space and time and are therefore not steady-state lumps

    The HeH+HeH^+ molecular ion in a magnetic field

    Get PDF
    A detailed study of the low-lying electronic states {}^1\Si,{}^3\Si,{}^3\Pi,{}^3\De of the HeH+\rm{HeH}^+ molecular ion in parallel to a magnetic field configuration (when \al-particle and proton are situated on the same magnetic line) is carried out for B=0−4.414×1013B=0-4.414\times 10^{13} G in the Born-Oppenheimer approximation. The variational method is employed using a physically adequate trial function. It is shown that the parallel configuration is stable with respect to small deviations for \Si-states. The quantum numbers of the ground state depend on the magnetic field strength. The ground state evolves from the spin-singlet {}^1\Si state for small magnetic fields B≲0.5B\lesssim 0.5 a.u. to the spin-triplet {}^3\Si unbound state for intermediate fields and to the spin-triplet strongly bound 3Π^3\Pi state for B≳15B \gtrsim 15 a.u. When the HeH+\rm{HeH}^+ molecular ion exists, it is stable with respect to a dissociation.Comment: 13 pages, 5 figures, 4 table

    Charged Hydrogenic, Helium and Helium-Hydrogenic Molecular Chains in a Strong Magnetic Field

    Full text link
    A non-relativistic classification of charged molecular hydrogenic, helium and mixed helium-hydrogenic chains with one or two electrons which can exist in a strong magnetic field B≲1016B \lesssim 10^{16} G is given. It is shown that for both 1e−2e1e-2e cases at the strongest studied magnetic fields the longest hydrogenic chain contains at most five protons indicating to the existence of the H54+\rm{H}_5^{4+} and H53+\rm{H}_5^{3+} ions, respectively. In the case of the helium chains the longest chains can exist at the strongest studied magnetic fields with three and four \al-particles for 1e−2e1e-2e cases, respectively. For mixed helium-hydrogenic chains the number of heavy centers can reach five for highest magnetic fields studied. In general, for a fixed magnetic field two-electron chains are more bound than one-electron ones.Comment: 32 pages, 2 figures, 9 table

    Effects of Line-tying on Magnetohydrodynamic Instabilities and Current Sheet Formation

    Full text link
    An overview of some recent progress on magnetohydrodynamic stability and current sheet formation in a line-tied system is given. Key results on the linear stability of the ideal internal kink mode and resistive tearing mode are summarized. For nonlinear problems, a counterexample to the recent demonstration of current sheet formation by Low \emph{et al}. [B. C. Low and \AA. M. Janse, Astrophys. J. \textbf{696}, 821 (2009)] is presented, and the governing equations for quasi-static evolution of a boundary driven, line-tied magnetic field are derived. Some open questions and possible strategies to resolve them are discussed.Comment: To appear in Phys. Plasma

    Magnetohydrodynamic Turbulent Cascade of Coronal Loop Magnetic Fields

    Full text link
    The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy E_M (k_perp) \propto k_\perp^{-2.7} exceeds kinetic energy E_K (k_\perp) \propto k_\perp^{-0.6}. Increments scale as \delta b_\ell \simeq \ell^{-0.85} and \delta u_\ell \simeq \ell^{+0.2} with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.Comment: 5 pages, 5 figures, to appear in Physical Review E - Rapid. Com

    Renormalized non-modal theory of the kinetic drift instability of plasma shear flows

    Full text link
    The linear and renormalized nonlinear kinetic theory of drift instability of plasma shear flow across the magnetic field, which has the Kelvin's method of shearing modes or so-called non-modal approach as its foundation, is developed. The developed theory proves that the time-dependent effect of the finite ion Larmor radius is the key effect, which is responsible for the suppression of drift turbulence in an inhomogeneous electric field. This effect leads to the non-modal decrease of the frequency and growth rate of the unstable drift perturbations with time. We find that turbulent scattering of the ion gyrophase is the dominant effect, which determines extremely rapid suppression of drift turbulence in shear flow

    Extra Dimensions: A View from the Top

    Get PDF
    In models with compact extra dimensions, where the Standard Model fields are confined to a 3+1 dimensional hyperplane, the ttˉt \bar t production cross-section at a hadron collider can receive significant contributions from multiple exchange of KK modes of the graviton. These are carefully computed in the well-known ADD and RS scenarios, taking the energy dependence of the sum over graviton propagators into account. Using data from Run-I of the Tevatron, 95% C.L. bounds on the parameter space of both models are derived. For Run-II of the Tevatron and LHC, discovery limits are estimated.Comment: Typos corrected, references added. 12 pages, LaTeX, 2 ps figure

    The Spectral Slope and Kolmogorov Constant of MHD turbulence

    Full text link
    The spectral slope of strong MHD turbulence has recently been a matter of controversy. While Goldreich-Sridhar model (1995) predicts Kolmogorov's -5/3 slope of turbulence, shallower slopes were often reported by numerical studies. We argue that earlier numerics was affected by driving due to a diffuse locality of energy transfer in MHD case. Our highest-resolution simulation (3072^2x1024) has been able to reach the asymptotic -5/3 regime of the energy slope. Additionally, we found that so-called dynamic alignment, proposed in the model with -3/2 slope, saturates and therefore can not affect asymptotic slope. The observation of the asymptotic regime allowed us to measure Kolmogorov constant C_KA=3.2+-0.2 for purely Alfv\'enic turbulence and C_K=4.1+-0.3 for full MHD turbulence. These values are much higher than the hydrodynamic value of 1.64. The larger value of Kolmogorov constant is an indication of a fairly inefficient energy transfer and, as we show in this Letter, is in theoretical agreement with our observation of diffuse locality. We also explain what has been missing in numerical studies that reported shallower slopes.Comment: 5 pages 3 figure

    Weak Alfvén-wave turbulence revisited

    Get PDF
    Weak Alfvénic turbulence in a periodic domain is considered as a mixed state of Alfvén waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed, and, indeed, none is found. If the 2D modes are not directly forced, k−2 and k−1 spectra are found for the Alfvén waves and the 2D modes, respectively, with the latter less energetic than the former. The wave number at which their energies become comparable marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar, and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagating Alfvén waves. If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but at small enough scales, the same weak and then strong regimes as described above are achieved
    • …
    corecore